Prove (cos(x) / (1 - sin(x))) - tan(x) = sec(x)
Here is the step by step demonstrations to prove (cos(x) / (1 - sin(x))) - tan(x) = sec(x) trig identity easily.
(cos(x) / (1 - sin(x))) - tan(x) = sec(x) - Trig Identities Proof
Hence Proved.
Trig identities proof are made simpler and easier here. Listed here various trig identities with the step by step proof.
Related Proofs :
- Prove tan(y) / sin(y) = sec(y)
- Prove sin(y) + sin(y) cot2(y) = cosec(y)
- Prove sin(x) × cos(x) × tan(x) = 1 - cos2(x)
- Prove tan(x) + cot(x) = sec(x) csc(x)
- Prove (1+cos(x)) / sin(x) = sin(x) / (1-cos(x))
- Prove tan(x) sin(x) + cos(x) = sec(x)
- Prove (1 / tan(x)) + tan(x) = 1 / (sin(x) × cos(x))
- Prove sin(x) - sin(x) × cos2(x) = sin3(x)
- Prove cos(x) / (1 + sin(x)) + (1 + sin(x)) / cos(x) = 2 sec(x)
- Prove cos(x) / (1 - sin(x)) - cos(x) / (1 + sin(x)) = 2 tan(x)
- Prove (1 - sin(x)) / cos(x) = cos(x) / (1 + sin(x))
- Prove cos2(x) = (csc(x) cos(x)) / (tan(x) + cot(x))
- Prove (sin4(x) - cos4(x)) / (sin2(x) - cos2(x)) = 1
- Prove tan2(x) / (tan2(x) + 1) = sin2(x)
- Prove 1 - 2cos2(x) = (tan2(x) - 1) / (tan2(x) + 1)
- Prove tan2(x) = csc2(x) tan2(x) - 1
- Prove sec(x) + tan(x) = cos(x) / (1 - sin(x))
- Prove (csc(x) / sin(x)) - (cot(x) / tan(x)) = 1
- Prove sin4(x) - cos4(x) = 1 - 2cos2(x)
- Prove (sin(x) - cos(x))2 + (sin(x) + cos(x))2 = 2
- Prove (sin2(x) + 4sin(x) + 3) / cos2(x) = (3 + sin(x)) / (1 - sin(x))
- Prove tan2(x) + 1 + tan(x) sec(x) = (1 + sin(x)) / cos2(x)